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Executive Summary

A section of KY 30 in Jackson and Owsley Counties is targeted for redesign to provide a safer and more
efficient corridor that will support economic activity in eastern Kentucky. Data for the existing KY 30
alignment and eight alternative alignments developed by HMB Professional Engineers Inc. were provided
to researchers at the Kentucky Transportation Center (KTC). KTC researchers also developed a new
alternative that modified the existing alignment to improve the safety of various locations. Researchers
applied safety analysis procedures from Part C of the Highway Safety Manual (HSM) to the existing and
alternative alignments of KY 30 using the Interactive Highway Safety Design Model (IHSDM). The
resulting crash predictions were used to analyze each alternative and perform a benefit-cost analysis.

Each alignment’s safety benefits were derived by calculating the total reduction in crashes (i.e.,
subtracting the number of crashes anticipated for an alternative from the number of crashes that would be
expected if the segment were not redesigned). Comprehensive crash costs from the National Safety
Council (NSC) were applied to the reduction in crashes to estimate, in monetary terms, the safety benefit.
This figure was compared to the estimated cost of each project. KTC’s modified existing alignment had a
benefit-cost (B/C) ratio of 0.14, meaning the project’s cost outweighs the expected safety benefits. The
other new build alternatives had negative B/C ratios, meaning the cost of crashes is expected to increase
after their implementation. The increase in crash costs for the new build alternatives is due to the increase
in crash severity expected on the new alignments coupled with the current alignment remaining a source
of crashes (as the latter would remain open to facilitate the mobility of residents).

IHSDM analysis only captures expected safety benefits, however. The selected alternative may be
economically justifiable based on a holistic evaluation of the potential benefits it offers — in addition to
safety benefits. The potential non-safety benefits of each project alternative should be analyzed to inform
and improve the decision-making process for the KY 30 redesign.
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Introduction to IHSDM

The Interactive Highway Safety Design Model (IHSDM) is a decision-support tool created as a part of the
Federal Highway Administration’s (FHWA’s) Data-Driven Safety Analysis initiative. It is used to
evaluate the safety and operational effects of geometric design decisions on highways. The software
consists of six evaluation modules: crash prediction, design consistency, intersection review, policy
review, traffic analysis, and driver/vehicle response — all are supported by nationally accepted research
and design policies (1).

The crash prediction module implements Part C of the Highway Safety Manual (HSM) using safety
performance functions (SPFs) and crash modification factors (CMFs) from the HSM to predict crash
frequency and severity on existing alignments, compare the safety of design alternatives, and assess the
safety and cost effectiveness of design decisions (2). The current version of IHSDM can apply the crash
prediction module on all roadway types covered in HSM Part C, including rural two-lane highways.

KY 30 IHSDM Application Summary

This research applied the safety analysis from HSM Part C to the existing and eight proposed alignments
of KY 30 in Jackson and Owsley Counties. IHSDM was used to provide insight into the expected safety
performance of each alignment. This study also demonstrates how the HSM can be implemented in the
design phase of Kentucky Transportation Cabinet (KYTC) projects. This section of KY 30 is a part of the
[-75 to Mountain Parkway corridor that connects population centers in eastern Kentucky. The segment
has been targeted for improvements due to the presence of several geometric deficiencies (relative to
guidelines contained in AASHTO Green Book design policy). These include reverse curves, vertical
curves with insufficient sight distance, lack of clear zone along the roadway, and access points with
limited visibility. The goal of the redesign is to provide a safer and more efficient corridor and make the
infrastructure improvements needed to support economic activity in eastern Kentucky (3). This study
evaluated current and proposed alignments to determine which alternative has the highest expected safety
performance.

IHSDM Data Inputs

IHSDM contains many data fields, which let users achieve their desired level of detail when modeling
roadways. Certain modules have minimum data requirements that must be satisfied for the module to
operate. The crash prediction module requires the following inputs for each alignment:

Horizontal alignment

Vertical alignment

Lane profile

Shoulder profile (including edge line rumble strips)
Cross slopes for tangent sections

Annual average daily traffic (AADT)

Design speed

Driveway density

Roadside hazard rating

In addition to the minimum inputs, the following data can be included in IHSDM to enhance crash
predictions if they apply to a given alignment:

Ramp connections

Intersections

Lane offsets

Roadway lighting

Speed enforcement device presence

KTC Research Report 2



e Centerline rumble strip
e Site-specific crash data

The existing and proposed alignments of KY 30 contain intersections with other roadways; however, a
lack of alignment and stationing information for the intersecting roadway segments made the inclusion of
intersections in the crash prediction modules for each alignment impractical given the scope of this study.
Therefore, all intersections were excluded from this analysis.

Process for Existing Alignment Input

Kentucky Transportation Center (KTC) researchers acquired horizontal and vertical alignments for the
existing KY 30 corridor from KYTC in the form of .alg and .dgn files. These files were opened in
InRoads and converted to .landxml files. IHSDM requires .xml files in a specific IHSDM format to
import highway data into the program; however, the software is able to read data from a .landxml file.
The .landxml alignments were imported into IHSDM. Supplemental information related to the current KY
30 alignment was needed to satisfy the minimum data requirements, and the majority of these data was
found in the Design Executive Summary (DES) from HMB (the consultant under contract with KYTC for
KY 30 design analysis). The following data from the DES were used to model the existing KY 30
corridor in [HSDM:

AADT for the 2017 (1300) and 2038 (1800)

DHV of 210

10’ thru lanes

2% cross slope on all tangent sections

Shoulders of 0-2” (IHSDM was programmed as 0’ shoulders along the entire alignment due to the
scarcity of actual shoulders) with rumble stripes

e 55 mph design speed

e Maximum superelevation of 8%

Two assumptions were made about the existing alignment to satisfy the minimum input requirements for
a crash prediction module in IHSDM. Driveway density was counted as 10/mile based on an inspection of
the existing alignment using aerial photography and considered constant across the entire alignment. A
roadside hazard rating of four was assumed along the entire alignment. Roadside hazard ratings are used
to categorize the roadside accident potential of two-lane highways on a scale from one (best) to seven
(worst). The ratings are based on roadside design factors including clear zone, guardrail presence, side
slope, distance to obstacles, and vehicle recoverability upon exiting the roadway (4). A rating of four was
assumed on the existing KY 30 alignment due to the lack of shoulders, proximity of trees to the roadway,
and steep slopes along the road.

Process for Alternative Alignment Input

Researchers also obtained horizontal and vertical alignments for the eight alternative KY 30 alignments
(Alternatives 1, 1a, 1 to 2 Crossover, 2 to 1 Crossover, 2, 2a, 2a, and 3) in .alg and .dgn format from
KYTC. These alignments were converted from .alg to .landxml in InRoads and imported into IHSDM.
The supplemental information needed to complete a crash prediction module found in the DES for the
alternatives is as follows:

AADT for the 2017 (1300) and 2038 (1800)

DHV of 210

11’ thru lanes

2% cross slope on all tangent sections

Paved shoulders of 10’ (assuming rumble stripes), 2’ unpaved with 4% slopes (outside shoulders
only because it is an undivided highway), totaling 12’ of shoulder
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e 55 mph design speed
e Maximum superelevation of 8%

Assumptions were made about the two remaining data requirements: roadside hazard rating and driveway
density. The roadside hazard rating was set at three for all alternative alignments due to their
improvements in shoulder width, clear zone, and roadside slopes. The same driveway density of 10/mile
for the existing alignment was assumed for the alternatives.

All alternative alignments are the same for approximately the first 3,500 ft. However, KYTC’s alignment
files only associated the first 3500 ft. of alignment with Alternative 1. As such, each alternative listed in
Table 1 has a shorter length when compared to Alternative 1. The differences among alternative starting
points and a visual representation of the eight alternative alignments is shown in Figure 1.

Start of Alternative 1

Start of Remaining
Alternati
_— ernatives

/

/

\(//‘74

Figure 1 Alternative Alignment Comparison

In addition to the eight alignments provided by HMB, KTC created an alternative alignment based on the
existing alignment of KY 30 in an attempt to provide a lower cost alternative that improves safety along
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KY 30. Researchers used five years of historic crash data to identify curves along the existing alignment
with high crash rates that could benefit from spot improvements. In addition to several spot improvements
along the alignment, the beginning of the corridor was shifted south along US 421 to meet the KY 30
intersection for the recently renovated KY 30 corridor west of US 421. KTC’s alignment is highlighted in
blue in Figure 2. Alternative alignments are shaded red (same as in Figure 1); the existing alignment is in
red with tick marks. The modified existing alignment uses the beginning of HMB’s Alternative 1 to
connect into the existing alignment near station 180+00. This connection of the existing alignment to the
first section of Alternative 1 bypasses the intersection with US 421 and curves with high historical crash
rates (Figure 4.) The curves nearest the connection between Alternative 1 and the existing alignment are
smoothed to create a safer transition. The modified existing alignment deviates from the existing
alignment in three additional locations: stations 365+00, 500+00, and 627+00. These three locations
represent a series of horizontal and vertical curves that are difficult to traverse and show patterns of
historical crashes. In addition to the realignments in the modified existing alignment, this proposed
alternative also involves a widening of shoulders to 2 ft. along the entire length of the corridor.

Figure 2 KTC Proposed Modified Existing Alignment (Blue Alignment)
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Crash Prediction Module

The crash prediction module requires the selection of a superelevation policy, calibrated Safety
Performance Function (SPF), Crash Modification Function (CMF) model, and crash distribution model as
well as a set of years for analysis. IHSDM has preprogramed options for these requirements based on the
HSM and AASHTO policies. In addition to these requirements, there is an option to include historical
crash data to perform Empirical Bayes (EB) analysis if the alignment has known crash data.

The crash prediction module in IHSDM is programed with HSM SPFs and various CMFs for all highway
types. IHSDM contains an option to adjust the default HSM SPFs with coefficients calibrated to state-
specific crash data. KTC has a Kentucky-specific SPF for rural two-lane highways; however, the KTC
SPF uses a different model format than what is programed into IHSDM. Therefore, the coefficients for
the KTC SPF cannot be directly imported into the HSM SPF in IHSDM. The HSM SPF format for a rural
two-lane highway is SPF = AADT * L * 10% x e? while KTC uses SPF = e®*+b*In(4ADT)+In(L)
Kentucky-specific data were used to calibrate a new SPF that fit the HSM model format. However, the
Kentucky data produced an SPF with a lower goodness of fit than the HSM SPF because the HSM model
format is not optimal for modeling rural, two-lane crashes. Accordingly, the default HSM SPF was used
in the crash prediction modules for all KY 30 alignments.

The default HSM CMFs were used in the crash prediction module because Kentucky currently lacks a set
of rural two-lane CMFs. Figure 3 is a screenshot of the CMFs used in IHSDM for rural two-lane
highways.

Display Crash Prediction Module Model Configuration Data [Read-Only]

B Data Set Attributes

& Rural Two-Lane Model Data
Segment SPF AADT Applicability
Segment SPF Factors
CMF1r Lane Width Factors
CMF2r: CMFwra Shoulder Width Factors
CMF2r: CMFtra Shoulder Type Factors
CMF3r Horizontal Curves Factors
CMF4r Superelevation Factors
CMF5r Vertical Grade Factors
CMF6r Driveway Density Factors
CMFT7r Centerline Rumble Strips Factors
CMF8r Passing Lane Factors
CMF9r Two-Way Left-Turn Lane Factors
CMF10r Roadside Hazard Rating Factors
CMF11r Lighting Factors
CMF12r Automated Speed Enforcement Factors

Figure 3 IHSDM Rural Two-lane CMFs

The default superelevation policy (AASHTO 2011) and crash distribution (HSM) were selected for all
alignments. The modules were set for the years 2017 to 2038 in accordance with the AADTs provided in
the DES.

In addition to the default HSM crash distribution, five years of crash data (2011-2015) were imported
into IHSDM for the existing alignment. A query of crashes along KY 30 between 2011 and 2015
uncovered 35 crashes, nine of which were located at the intersection of KY 30 and US 421. Intersection
crashes were excluded from the analysis because intersections were not programed into IHSDM for the
existing or alternative alignments. The 26 remaining segment crashes had severities ranging from serious
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injury to property damage only. Crash locations for the 2011-2015 interval are plotted in Figure 4, with
higher crash segments circled in red.

Figure 4 KY 30 2011-2015 Crashes

The crash data allowed researchers to perform EB analysis on the existing alignment. EB analysis more
accurately models expected future crash rates and crash distributions by combining historical crash data
with SPF crash predictions. With the added crash data, researchers executed two crash prediction models
on the existing alignment, one using EB analysis and one using only SPFs. The two predictions for the
existing alignment can be used to determine how the inclusion of historic crash data affects future crash
prediction, and in turn, the identification of locations for spot improvements.

According to the HSM Part C Appendix A.2.1, the EB method is not applicable to corridor improvements
that significantly modify an alignment from its existing state (and on which historical crashes occurred)
(5). Historical crash data are not applicable to the alternative and modified existing alignments because
they differ significantly from the existing alignment. As such, it cannot be said that these historical
crashes would have occurred in the same location and manner on the alternative alignments. Accordingly,
only a simple SPF estimate of crashes was used for the alternatives.

Comparison of Results

Table 1 summarizes the output of the crash prediction module for each alignment. This summary includes
the time period for the crash prediction simulation, length of roadway, total expected crashes by severity
(fatal and injury crashes combined (F/I), fatal and only severe injury crashes combined (F/S), and
property damage only crashes (PDO)), and expected crash rates by severity. As intersections were
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excluded from analysis for all alignments, the expected crashes and crash rates in Table 1 are for
segments only — not intersections. Alternatives 2, 2a and 2b were so geometrically similar that their
IHSDM outputs were identical. Therefore, the crash prediction results for these three alternatives are
displayed in a single column in Table 1. Due to the shorter length of the alternative alignments compared
to Alternative 1 (shown in Figure 1), the lengths and total crashes for Alternatives la, 2, 2a, 2b, and 3 are
lower than they would be if the additional 3,500 ft. were included in IHSDM analysis. However, the
crashes on the additional 3,500 ft. were incorporated into the benefit-cost analysis (discussed later in the
report) using the IHSDM-predicted crash rates for each alternative.

Table 1 Comparison of IHSDM Crash Prediction

Existing | Existing | Modified Alt. 1 | Alt. | Alt. 1 | Alt. | Alt.2, | Alt. 3
EB SPF Existing SPF la to 2 2to |2a,2b | SPF
SPF SPF | SPF 1 SPF
SPF

Time Period 22 22 22 22 22 22 22 22 22
(yr)
Length (mi) 13.82 13.82 13.73 1091 | 9.70 | 10.06 |9.82 | 10.06 10.46
Total Crashes 237 568 395 128 115 139 120 | 123 119
in Time Period
F/I Crashes 73 182 127 41 37 44 35 40 38
F/S Crashes 90 100 70 23 20 24 21 22 21
PDO Crashes 164 386 268 87 78 94 81 84 81
Crash Rate 0.78 1.87 1.31 0.53 0.54 |0.63 0.55 | 0.56 0.52
(crash/mi/yr)
F/I Rate 0.24 0.60 0.42 0.17 0.17 |0.20 0.18 | 0.18 0.17
(crash/mi/yr)
F/S Rate 0.30 0.33 0.23 0.10 0.10 |0.11 0.10 | 0.10 0.09
(crash/mi/yr)
PDO Rate 0.54 1.27 0.89 0.36 0.37 |0.42 0.38 | 0.38 0.35
(crash/mi/yr)

Querying five years of crash data (excluding intersection crashes) produced 26 segment crashes along the
13.82 miles of roadway — a crash rate of 0.38 crashes/mi/yr. The DES indicated that 52 crashes occurred
along the corridor between 2010 and 2015. Compared to the data KTC used, this number includes an
additional year of data as well as intersection and side road crashes close to KY 30. Because the HSM
recommends three to five years of crash history for safety analysis, researchers chose the most recent five
years of crash data as opposed to the six years presented in the DES. The segment crash rate predicted for
the existing alignment using only SPFs is 1.87 crashes/mi/yr. This estimate is much higher than the
current rate, 0.38 crashes/mi/yr. The EB analysis predicts a crash rate of 0.78 crashes/mi/yr. IHSDM does
not account for driver familiarity in its crash prediction, which could explain the discrepancy between the
current and expected crash rates. The crash prediction module also accounts for future growth of AADT,
a factor expected to contribute to a higher crash rate.
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As Table 1 shows, the modified existing alignment created by KTC has a crash rate of 1.31 crashes/mi/yr
using SPF analysis, compared to the 1.87 crashes/mi/yr from the existing alignment’s SPF analysis. This
is a 30% reduction in crashes while still making use of the existing alignment.

The predicted crash rates for all HMB alternatives are relatively low, all lower than the expected crash
rate on the existing alignment. This suggests that any of the alternative alignments would result in a
corridor with fewer crashes than the existing alignment. Although IHSDM does not accurately represent
the actual crashes on the existing alignment, the difference between the expected crashes/rates on the
existing and proposed alignments is still meaningful in assessing relative performance.

The two sets of related alternatives, Alternatives 1 and la and Alternatives 2, 2a, and 2b, show little
difference in expected crash rates along the proposed alignments. This is due to the alternatives’
geometric similarities. Alternative 1 to 2 Crossover has the highest expected crash rate, 0.63
crashes/mi/yr, while Alt 3 has the lowest expected crash rate, 0.52 crashes/mi/yr. A difference of 0.11
crashes/mi/yr between the highest and lowest expected crash rates equates to roughly one crash/yr over
the 10-mile length of the proposed alternatives, which is insignificant. Alternative 1a has the fewest total
crashes; however, this is due to the alignment being shorter than the remaining alternatives. All
alternative alignments share the same distribution of crashes across all severity levels, which is a function
of the roadway type (rural, two-lane, undivided). PDO crashes account for 68% of total crashes, and
fatal/injury crashes account for the remaining 32%. IHSDM also estimates 18% of crashes will be fatal or
a serious injury crash.

IHSDM produces a graphical output for each alignment that shows the roadway’s geometric features and
expected crash rate plotted against alignment stationing. These plots serve as a simple method to visualize
the expected crashes along the length of the alignment, allowing for the identification of high-crash
locations. These plots also visualize the impact of proposed roadway geometry on crash rates. Appendix
A contains a discussion of the crash plots for each alternative as well as a comparison between the SPF
and EB plots for the existing alignment.

Benefit-Cost Analysis

From a safety perspective, the benefit derived from implementing a given alternative is fewer crashes. To
estimate the expected safety benefit of a given alternative, the difference in expected crashes between the
existing alignment and alternative alignments must be calculated and converted to a dollar amount. The
estimated monetary benefits can be compared to the estimated cost of an alternative.

Selecting any of the new build alternatives would leave the existing KY 30 alignment in place for
residents along the corridor. Over 120 households require the existing KY 30 for access to Kentucky’s
roadway network. Adding a new alignment will not remove all traffic from existing KY 30; therefore, the
roadway will still be a source for potential future crashes. To model the expected future crashes on
existing KY 30 if an alternate alignment were selected, the existing AADT was halved (as a conservative
effort to represent travel by the people who can access their homes only through the existing KY 30
alignment) and an SPF analysis performed. Reducing the AADT on the existing KY 30 results in 198
crashes over the 22-year study period (2017 to 2038). By adding these crashes to the predicted number
crashes for each new build alternative we can anticipate total expected SPF crashes on both the existing
KY 30 corridor and the new KY 30 corridor.

For the modified existing alignment, the new segment of alignment connecting the existing KY 30
alignment to US 421 south of its current intersection with US 421 would bypass 35 homes, leaving those
residents to use the existing, unimproved KY 30. Conservatively, assuming these households generate 10
trips per day, an AADT of 350 could be expected on the 2.4-mile stretch of unmodified K'Y 30 that would
result in crashes on top of those occurring on the modified KY 30 alignment. SPF analysis of the 2.4-mile
stretch of K'Y 30 with 350 AADT predicts 14 crashes over the 22-year study period. Adding these crashes
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to the crashes predicted for the modified existing alignment results in the total expected crashes if the
modified existing alignment were implemented.

Although EB analysis of the existing alignment more accurately represents the crashes along the corridor,
to more accurately compare the existing alignment and alternative alignments, SPF analysis of each
alignment must be used. It would not be reasonable to compare the EB analysis of the existing alignment
to the SPF analysis of the alternative alignments because the EB analysis provides an additional layer of
data that cannot be incorporated into the evaluation of the alternatives. In the case of KY 30, the use of
historical crashes reduces the total number of crashes predicted through IHSDM. Comparing EB crash
estimates for the existing alignment to an SPF crash prediction for an alternative alignment would
increase the gap between the two crash estimates. More crashes would be predicted on the alternative
alignment because these alignments would not benefit from a more accurate crash prediction, as they lack
historical crash data. Therefore, the SPF crashes on the alternatives must be compared to the SPF crashes
on the existing alignment — not the EB crashes — to provide a consistent method of crash prediction
between the alignments.

Comparing the SPF, EB, and historical crash analysis for the existing alignment shows the SPF analysis
predicts more crashes than the EB and historical crash analyses. If the reduction in crashes were derived
from the difference between IHSDM SPF crash predictions of the existing and alternative alignments, the
reduction in crashes would be higher than the expected future crashes on KY 30 based on the historical
crash analysis. The HSM stresses the use of engineering judgement for all safety decisions; therefore, to
avoid overinflating the benefit of any proposed alternative, the ratio of the alternative alignment SPF
crashes to the SPF crashes for the existing alignment was applied to the annual historic corridor crash rate
to estimate the safety benefit of a given alternative. This approach provides a conservative estimate of the
actual crash reduction potential of each alternative. Table 2 shows the SPF-predicted crashes from
IHSDM for each alignment as well as the reduction in crash rate compared to the existing alignment.

Table 2 SPF Crash Rate Summary

Alignment SPF Predicted | Additional Crashes for Total Predicted | Expected Percent
Crashes Existing KY 30 Crashes Crash Reduction

Existing 568 n.a 568 0.00

Modified 395 14 409 27.99

Existing

Alternative 1 128 198 326 42.61

Alternative la | 123 198 321 43.49

Alternative 1144 198 346 39.08

to 2

gltlematwe 2 1128 198 326 42.61

Alternative 2 131 198 329 42.08

Alternative 2a | 131 198 329 42.08

Alternative 2b | 131 198 329 42.08

Alternative 3 127 198 325 42.78

As noted, Alternatives la through 3 share an alignment with Alternative 1 over their first 3,500 ft.
However, the design files did not associate that segment of alignment with each alternative. As such, it
was omitted from IHSDM analysis for those alternatives. To account for the additional crashes that would
occur along that segment for the alternatives using it, the overall crash rate of each alternative as predicted
by IHSDM (Table 1) was multiplied by 0.66 miles (3,500 ft.), then by the 22-year study period used in
the DES. Additional crashes were combined with the total predicted crashes for each alternative (see
Table 1), which resulted in the SPF-predicted crashes displayed in Table 2.
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Kentucky crash records distribute the injury severity of the 26 historical crashes on KY 30 into five
categories: fatal, incapacitating, non-incapacitating, possible injury, and property damage only. The SPFs
from the HSM distribute injury severity among three categories: fatal and serious injuries, injuries, and
property damage only. To facilitate direct comparisons between the two distributions, historic crashes
were aggregated to adapt to the SPF severity distribution. Crash distributions are displayed in Table 3.
The historical crash frequency percentages are based on the crashes that occurred on KY 30 in the past
five years. SPF crash frequencies are based on rural, two-lane data in the HSM. In addition to the
frequency of each severity type, the National Safety Council (NSC) comprehensive cost per crash is
provided in the table. The HSM severity distribution does not distinguish fatal from incapacitating
injuries or non-incapacitating injuries from possible injuries. Therefore, a weighted average cost was
calculated for these combined injury types using the NSC comprehensive costs and the 2015 annual
distribution of crashes in Kentucky obtained from the 2015 Traffic Collison Facts. NSC reported a
dramatic increase in comprehensive crash costs between 2014 and 2015. The 2015 crash costs were
applied to all crashes in the study period.

Table 3 2011-2015 KY-30 Historic Crash Distribution and Costs

Injury Type Comp. Cost | Weighted Cost | 5-Year Historic SPF SPF
per Crash ($) | ($) (7) Historic Weighted | Predicted Weighted
(6) Frequency | Comp. Frequency | Comp. Cost
Cost ($) &)
Fatal 9,900,000 2,678,496 4% 1,071,340 | 18% 482,129
Incapacitating | 1,100,000
Non- 298,000 196,440 23% 45,181 14% 27,502
Incapacitating
Possible Injury | 138,000
Property 8,400 8,400 73% 6,132 68% 5,712
Damage Only
Comp. Cost per 158,453 515,343
crash ($)

Understanding the significance of the two crash severity distributions is critical for grasping the process
used to calculate the safety benefit of each alternative. The proposed alternatives, except for KTC’s
modified existing alignment, differ significantly from the existing KY 30 corridor. The proposed
alignments are corridors with higher speeds and less curvature. The existing corridor has lower speeds
and greater curvature compared proposed alternatives. As such, different crash types are anticipated on
the alternatives. The differing crash types correspond to a difference in crash severity, hence the use of
two different severity distribution. The historical distribution correlates with injuries expected on existing
KY 30 and the modified existing alignment. The SPF severity distribution correlates with injuries
expected on the alternative alignments.

To calculate the safety benefit of each alignment over the study period, first the annual historical crash
rate was calculated by dividing the number historical crashes along the KY 30 corridor (26) by the five-
year study period. This equals 5.2 crashes/yr. The annual crash rate was then multiplied by 22 years
(length of the study period) and the comprehensive cost per crash from the historical severity distribution.
This yielded the cost of crashes had no alterations to the alignment been made. Next, the annual crash rate
for each alternative was reduced in accordance with the “Expected Percent Crash Reduction” column in
Table 2. The reduced crash rate for each alternative was multiplied by the 22-year study period and the
SPF-weighted comprehensive cost per crash to derive expected crash cost, assuming an alternative was
implemented (except for the modified existing alignment which used the historical weighted
comprehensive cost). The difference between the two crash costs for a given alternative was calculated to
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determine the expected safety benefit for each alternative. The results of these calculations are
summarized in Table 4.

Table 4 Expected Safety Costs of KY 30 Alternatives for 22-year Study Period

Alignment Crash Cost from | Crash Cost from | Safety Benefit Project Cost B/C
No Alternative (Million $) (Million $) Ratio
Implementation | Implementation
(Million $) (Million $)
Existing 18.13 18.13 0 0 N/A
Modified 18.13 13.05 5.08 35.1 0.14
Existing
Alternative 1 18.13 33.84 -15.71 72.5 -0.22
Alternative la 18.13 33.32 -15.19 72.5 -0.21
Alternative 1 to 2 | 18.13 35.91 -17.78 72.3 -0.25
Alternative 2to 1 | 18.13 33.84 -15.71 80.4 -0.20
Alternative 2 18.13 34.15 -16.02 77.9 -0.21
Alternative 2a 18.13 34.15 -16.02 77.9 -0.21
Alternative 2b 18.13 34.15 -16.02 77.9 -0.21
Alternative 3 18.13 33.73 -15.6 N/A N/A

Table 4 also contains the cost estimate of HMB’s alternatives from the DES. Alternative 3 does not have
a cost estimate because it was not covered in the DES. For the modified existing alignment proposed by
KTC, the cost estimate assumed $2.6 million for the shouldering and an additional $5 million per mile of
alignment where curves were smoothed or new alignment was added (6.5 miles total). Benefit-cost (B/C)
ratios were calculated by dividing the expected safety benefit of an alternative by its expected cost. B/C
ratios are also displayed in Table 4.

The modified existing alignment is the only alternative with a positive B/C ratio. However, the B/C ratio
is less than one (0.14), meaning the project cost outweighs the expected safety benefits. The remaining
new build alternatives have negative B/C ratios, meaning the cost of crashes is expected to increase
following their implementation. Increased crash costs are logical because although the number of crashes
is expected to decrease for new build alternatives, their geometry will increase speed and crash severity,
leading to a higher cost per crash. Additionally, if a new build alternative were selected, the existing KY
30 alignment will remain in place to facilitate access for residents living along it. It would be an
additional source of crashes for the corridor. Crashes on the existing corridor lessen a new build
alternatives’ potential for crash reduction, reducing their expected safety benefit.

A low or even negative safety B/C ratio would suggest that this project’s justification and priority are
based on more than just the goal of reducing crashes. Comparing KY 30’s existing geometries to
AASHTO’s Green Book design standards indicates the roadway does not reflect traditional engineering
values viewed as desirable, although this philosophy is now viewed as “nominal safety.” These design
alternatives will provide benefits other than safety — they will increase corridor efficiency (by reducing
travel times through the corridor) and promote economic activity through infrastructure improvements.
Additionally, a project’s purpose and need, per the Federal Highway Administration, can stem from
“Legislation” (i.e., a federal, state, or local governmental mandate for the action). As such, the project
could be justified if all its potential benefits are taken into account. [IHSDM analysis is limited because it
only captures safety benefits.

Summary of Findings
IHSDM, with its built-in crash prediction module, is a convenient tool for implementing HSM Part C
methodologies on any classification of roadway or intersection. The tool is preprogrammed with SPFs
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and CMFs published in the HSM, but users can input locally calibrated SPF and CMF regression
coefficients. [HSDM can be used to evaluate existing alignments or slight alterations to existing
alignments by combining SPFs and historical crash data and performing EB analysis. IHSDM lets users
evaluate alignments significantly different from the existing alignment using only SPFs. The output of
IHSDM’s crash prediction module includes several tables summarizing the frequency and severity of
expected crashes as well as a graphical output that plots expected crash rates against geometric features of
the roadway.

Performing EB analysis with historical crash data is critical for identifying the correct locations to
implement spot improvements, if the goal of a project is to install safety countermeasures on an existing
alignment. Relying solely on SPF crash predictions along existing alignments can result in incorrectly
identifying high-crash locations.

Applying IHSDM to KY 30 indicated that all alternative alignments have an expected B/C ratio less than
one, which means they offer no economic safety benefits. In fact, the new build alternatives have negative
B/C ratios, indicating the cost of crashes is expected to increase, most likely due to increases in crash
severity. Therefore, any alternative or treatment that can reduce the project cost, such as the modified
existing alignment proposed, would be the most cost-effective in terms of safety. IHSDM analysis was
only capable of capturing the expected safety benefit. As stated in the DES, the goal of the K'Y 30 project
is to provide a safer and more efficient corridor, and to make transportation infrastructure improvements
needed to support economic activity in Eastern Kentucky. The selected alternative may be economically
justifiable when viewed holistically based all the potential benefits it may provide regardless of the
expected safety benefits. The potential non-safety benefits of each project alternative should be analyzed
to inform and improve the decision-making process for the KY 30 redesign.
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Appendix A: IHSDM Crash Plot Comparison

Crash Prediction Summary, Section 1 (Undivided, Two Lane; Rural; Arterial)
Project: KY30, Evaluation: Evaluation 12
Highway: Alignment Existing KY 30
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Figure 5 Existing Alignment EB Crash Prediction Summary
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Crash Prediction Summary, Section 1 (Undivided, Two Lane; Rural; Arterial)
Project: KY30, Evaluation: Evaluation 1
Highway: Alignment Existing KY 30
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Figure 6 Existing Alignment SPF Crash Prediction Summary

Figures 5 and 6 serve as examples showing the impact of adding historical crash data to a corridor
analysis. In both figures, the horizontal and vertical curve features of the existing alignment are detailed
with the light blue and pink lines, respectively. The dark blue line shows crash rate by roadway segments
based on horizontal and vertical curve features, and the red line shows crash rate by segments based
solely on horizontal curve features. The high peaks of dark blue and red lines are locations where crash
rates are expected to be highest and could be targeted for spot improvements. There is a stark difference
in the location of the crash rate peaks between the EB analysis in Figure 5 and the SPF analysis in Figure
6. The peak crash rates in the EB analysis more accurately reflect the locations where crashes are
occurring. The SPF analysis identifies locations with undesirable geometric design such as sharp
horizontal or vertical curves and difficult curve transitions (i.e., reverse curves). In reality, the locations
with worse geometry are not always high crash locations, and KY 30 serves as an example of this.
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Stations 30+00 to 60+00 and 150+00 to 200+00 in Figure 3 correspond to two segments on KY 30 with
the highest numbers of historical crashes. These segments are circled in red in Figure 4. The EB method
identified these locations through peak crash rates. Some of the major peaks from the SPF method
correspond to locations with one or two crashes, but all the major peaks from the EB method
corresponded to at least one crash.

Without incorporating historical crash data, locations for spot improvements based on peak SPF crash
predictions would have been selected where their crash reduction potential would be limited to a single
crash. Using the historical data and EB analysis, spot improvement selection based on peak crash rates
calls attention to locations where the crash reduction potential is much higher.

Crash Prediction Summary, Section 1 (Undivided, Two Lane; Rural; Arterial)
Project: KY30, Evaluation: 2 ft shoulder
Highway: Alignment 1
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Figure 7 Modified Existing Alignment SPF Crash Prediction Summary
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The crash rates are predicted to be lowest along the sections of the modified existing alignment where the
beginning section of Alternative 1 leads into the existing alignment and where the existing curves were
smoothed. Crash rates are still predicted to be high at locations where the horizontal and vertical
alignments of the existing alignment were not modified, however, the peak crash rates are slightly lower
at these locations compared to the peak crash rates on the existing alignment due to the addition of 2 ft.
shoulders.

Crash Prediction Summary, Section 1 (Undivided, Two Lane; Rural; Arterial)
Project: KY30, Evaluation: Evaluation 1
Highway: Alignment Alt 1
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Figure 8 Alternative 1 Crash Prediction Summary

Alternative 1 shows highest expected crash rates (approximately 0.75 crashes/mi/yr) between stations
60+00 and 180+00. These higher crash rates correspond to the presence of a series of closely spaced
horizontal and vertical curves. However, the highest crash rates for this alternative are significantly lower
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than peak crash rates on the existing alignment. Accordingly, the reduction in crash rates suggests
Alternative 1 is a safer option than the existing alignment.

Crash Prediction Summary, Section 1 (Undivided, Two Lane; Rural; Arterial)
Project: KY30, Evaluation: Evaluation 1
Highway: Alignment Alt 1_A
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Figure 9 Alternative la Crash Prediction Summary

Again, as with Alternative 1, Alternative 1a shows a higher crash rate near the beginning of the alignment
due to the presence of more curvature. Accounting for the fact that the start of Alternative la is roughly
4,000 ft. after the start of Alternative 1. The peak crash rate here is just under 0.8 crashes/mi/yr, slightly
higher than Alternative 1. Overall, the minor changes between Alternatives 1 and 1a have little impact on
the expected crash rates along the alignment.
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Crash Prediction Summary, Section 1 (Undivided, Two Lane; Rural; Arterial)
Project: KY30, Evaluation: Evaluation 1
Highway: Alignment Alt 1 to Alt 2 (Crossover)
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Figure 10 Alternative 1 to 2 Crash Prediction Summary

The combination of Alternatives 1 and 2 shows a series of higher crash rates at the beginning of the
alignment that mirror the expected crash rates of Alternative 1 (starting at station 100+00 of Figure 1),
except the peak crash rates have increased. Along the middle and end of the alignment, where this
alignment matches Alternative 2, the crash rate peaks increase in magnitude but decrease in frequency
when compared to Alternatives 1 and la. This phenomenon is a function of a decrease in horizontal and
vertical curve features. However, the remaining horizontal curves have smaller radii, resulting in higher
crash rates. The combination of the Alternative 2 crossover with the beginning section of Alternative 1
increases expected crash rates.
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This alternative combines the first part of Alternative 2 with the second part of Alternative 1, the opposite

Figure 11 Alternative 2 to 1 Crash Prediction Summary

of the previous alternative. The combination results in lower expected crash rates than the previous
combination. Crash rates peak more frequently in the middle of this alignment compared to the previous
combination of Alternatives 1 and 2. Overall, this combination of alternatives has a lower crash rate than
the alternate combination, which is seen in both the crash summary graphs and Table 1.
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Crash Prediction Summary, Section 1 (Undivided, Two Lane; Rural; Arterial)
Project: KY30, Evaluation: Evaluation 1
Highway: Alignment Alt 2
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Figure 12 Alternative 2 Crash Prediction Summary

A comparison of Alternative 2 to Alternative 1 shows fewer crash rate peaks, but peaks lasting for longer
distances in the middle of the alignment, corresponding to longer horizontal curves with smaller radii.
Apart from this difference, the beginning and end of the two alignments show little difference in the
magnitude and distribution of crash rate peaks. From Table 1, the overall crash rates between the two
alternatives are similar in magnitude, which is reflected in the similarities between their summary plots.
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Crash Prediction Summary, Section 1 (Undivided, Two Lane; Rural; Arterial)
Project: KY30, Evaluation: Evaluation 1
Highway: Alignment Alt 2_A
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Figure 13 Alternative 2a Crash Prediction Summary

Alternative 2a has the same geometry as Alternative 2, but with a minor change in the alignment on the
first two vertical curves. This minor change does not impact on the crash rates; therefore, Alternative 2a is
identical to Alternative 2 in terms of expected safety performance.
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Crash Prediction Summary, Section 1 (Undivided, Two Lane; Rural; Arterial)
Project: KY30, Evaluation: Evaluation 1
Highway: AlignmentAlt2_B
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Figure 14 Alternative 2b Crash Prediction Summary

Alternative 2b is nearly identical to Alternative 2 in terms of expected crash rates along the alignment; the
only difference being within the first 6,000 ft. of the alignment. The beginning of Alternative 2b replaces
three high-magnitude, but short, peak crash rates with one short peak higher than Alternative 2’s peaks
and one longer peak with a lower crash rate. These changes in crash rates do significantly impact on the
overall crash rate for Alternative 2b, as is evident by the nearly identical crash rates for Alternatives 2 and
2b presented in Table 1.

KTC Research Report 24



Crash Prediction Summary, Section 1 (Undivided, Two Lane; Rural; Arterial)
Project: K30, Evaluation: Evaluation 1
Highway: Alignment Alt 3
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Figure 15 Alternative 3 Crash Prediction Summary

Alternative 3 has the lowest magnitude and fewest crash rate peaks of all the alternatives. This alternative
also has the fewest horizontal and vertical curve features. The curves of this alignment are longer and
have larger radii than all other alternatives, hence the crash rate peaks are lower in magnitude, but extend
over longer distances. Due to the lack of curves on Alternative 3 compared to the opposing alternatives,
IHSDM estimates this alignment will have the lowest crash rate.
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